7 research outputs found

    Context-sensitive interpretation of natural language location descriptions : a thesis submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy in Information Technology at Massey University, Auckland, New Zealand

    Get PDF
    People frequently describe the locations of objects using natural language. Location descriptions may be either structured, such as 26 Victoria Street, Auckland, or unstructured. Relative location descriptions (e.g., building near Sky Tower) are a common form of unstructured location description, and use qualitative terms to describe the location of one object relative to another (e.g., near, close to, in, next to). Understanding the meaning of these terms is easy for humans, but much more difficult for machines since the terms are inherently vague and context sensitive. In this thesis, we study the semantics (or meaning) of qualitative, geospatial relation terms, specifically geospatial prepositions. Prepositions are one of the most common forms of geospatial relation term, and they are commonly used to describe the location of objects in the geographic (geospatial) environment, such as rivers, mountains, buildings, and towns. A thorough understanding of the semantics of geospatial relation terms is important because it enables more accurate automated georeferencing of text location descriptions than use of place names only. Location descriptions that use geospatial prepositions are found in social media, web sites, blogs, and academic reports, and georeferencing can allow mapping of health, disaster and biological data that is currently inaccessible to the public. Such descriptions have unstructured format, so, their analysis is not straightforward. The specific research questions that we address are: RQ1. Which geospatial prepositions (or groups of prepositions) and senses are semantically similar? RQ2. Is the role of context important in the interpretation of location descriptions? RQ3. Is the object distance associated with geospatial prepositions across a range of geospatial scenes and scales accurately predictable using machine learning methods? RQ4. Is human annotation a reliable form of annotation for the analysis of location descriptions? To address RQ1, we determine the nature and degree of similarity among geospatial prepositions by analysing data collected with a human subjects experiment, using clustering, extensional mapping and t-stochastic neighbour embedding (t-SNE) plots to form a semantic similarity matrix. In addition to calculating similarity scores among prepositions, we identify the senses of three groups of geospatial prepositions using Venn diagrams, t-sne plots and density-based clustering, and define the relationships between the senses. Furthermore, we use two text mining approaches to identify the degree of similarity among geospatial prepositions: bag of words and GloVe embeddings. By using these methods and further analysis, we identify semantically similar groups of geospatial prepositions including: 1- beside, close to, near, next to, outside and adjacent to; 2- across, over and through and 3- beyond, past, by and off. The prepositions within these groups also share senses. Through is recognised as a specialisation of both across and over. Proximity and adjacency prepositions also have similar senses that express orientation and overlapping relations. Past, off and by share a proximal sense but beyond has a different sense from these, representing on the other side. Another finding is the more frequent use of the preposition close to for pairs of linear objects than near, which is used more frequently for non-linear ones. Also, next to is used to describe proximity more than touching (in contrast to other prepositions like adjacent to). Our application of text mining to identify semantically similar prepositions confirms that a geospatial corpus (NCGL) provides a better representation of the semantics of geospatial prepositions than a general corpus. Also, we found that GloVe embeddings provide adequate semantic similarity measures for more specialised geospatial prepositions, but less so for those that have more generalised applications and multiple senses. We explore the role of context (RQ2) by studying three sites that vary in size, nature, and context in London: Trafalgar Square, Buckingham Palace, and Hyde Park. We use the Google search engine to extract location descriptions that contain these three sites with 9 different geospatial prepositions (in, on, at, next to, close to, adjacent to, near, beside, outside) and calculate their acceptance profiles (the profile of the use of a preposition at different distances from the reference object) and acceptance thresholds (maximum distance from a reference object at which a preposition can acceptably be used). We use these to compare prepositions, and to explore the influence of different contexts. Our results show that near, in and outside are used for larger distances, while beside, adjacent to and at are used for smaller distances. Also, the acceptance threshold for close to is higher than for other proximity/adjacency prepositions such as next to, adjacent to and beside. The acceptance threshold of next to is larger than adjacent to, which confirms the findings in ‎Chapter 2 which identifies next to describing a proximity rather than touching spatial relation. We also found that relatum characteristics such as image schema affect the use of prepositions such as in, on and at. We address RQ3 by developing a machine learning regression model (using the SMOReg algorithm) to predict the distance associated with use of geospatial prepositions in specific expressions. We incorporate a wide range of input variables including the similarity matrix of geospatial prepositions (RQ1); preposition senses; semantic information in the form of embeddings; characteristics of the located and reference objects in the expression including their liquidity/solidity, scale and geometry type and contextual factors such as the density of features of different types in the surrounding area. We evaluate the model on two different datasets with 25% improvement against the best baseline respectively. Finally, we consider the importance of annotation of geospatial location descriptions (RQ4). As annotated data is essential for the successful study of automated interpretation of natural language descriptions, we study the impact and accuracy of human annotation on different geospatial elements. Agreement scores show that human annotators can annotate geospatial relation terms (e.g., geospatial prepositions) with higher agreement than other geospatial elements. This thesis advances understanding of the semantics of geospatial prepositions, particularly considering their semantic similarity and the impact of context on their interpretation. We quantify the semantic similarity of a set of 24 geospatial prepositions; identify senses and the relationships among them for 13 geospatial prepositions; compare the acceptance thresholds of 9 geospatial prepositions and describe the influence of context on them; and demonstrate that richer semantic and contextual information can be incorporated in predictive models to interpret relative geospatial location descriptions more accurately

    Detecting geospatial location descriptions in natural language text

    Get PDF
    References to geographic locations are common in text data sources including social media and web pages. They take different forms from simple place names to relative expressions that describe location through a spatial relationship to a reference object (e.g. the house beside the Waikato River). Often complex, multi-word phrases are employed (e.g. the road and railway cross at right angles; the road in line with the canal) where spatial relationships are communicated with various parts of speech including prepositions, verbs, adverbs and adjectives. We address the problem of automatically detecting relative geospatial location descriptions, which we define as those that include spatial relation terms referencing geographic objects, and distinguishing them from non-geographical descriptions of location (e.g. the book on the table). We experiment with several methods for automated classification of text expressions, using features for machine learning that include bag of words that detect distinctive words, word embeddings that encode meanings of words and manually identified language patterns that characterise geospatial expressions. Using three data sets created for this study, we find that ensemble and meta-classifier approaches, that variously combine predictions from several other classifiers with data features, provide the best F-measure of 0.90 for detecting geospatial expressions

    Challenges in Creating an Annotated Set of Geospatial Natural Language Descriptions (Short Paper)

    No full text
    In order to extract and map location information from natural language descriptions, a first step is to identify different language elements within the descriptions. In this paper, we describe a method and discuss the challenges faced in creating an annotated set of geospatial natural language descriptions using manual tagging, with the purpose of supporting validation and machine learning approaches to annotation and text interpretation

    Predicting Distance and Direction from Text Locality Descriptions for Biological Specimen Collections

    Get PDF
    A considerable proportion of records that describe biological specimens (flora, soil, invertebrates), and especially those that were collected decades ago, are not attached to corresponding geographical coordinates, but rather have their location described only through textual descriptions (e.g. North Canterbury, Selwyn River near bridge on Springston-Leeston Rd). Without geographical coordinates, millions of records stored in museum collections around the world cannot be mapped. We present a method for predicting the distance and direction associated with human language location descriptions which focuses on the interpretation of geospatial prepositions and the way in which they modify the location represented by an associated reference place name (e.g. near the Manawatu River). We study eight distance-oriented prepositions and eight direction-oriented prepositions and use machine learning regression to predict distance or direction, relative to the reference place name, from a collection of training data. The results show that, compared with a simple baseline, our model improved distance predictions by up to 60% and direction predictions by up to 31%

    What Do You Mean You\u27re in Trafalgar Square? Comparing Distance Thresholds for Geospatial Prepositions

    Get PDF
    Natural language location descriptions frequently describe object locations relative to other objects (the house near the river). Geospatial prepositions (e.g.near) are a key element of these descriptions, and the distances associated with proximity, adjacency and topological prepositions are thought to depend on the context of a specific scene. When referring to the context, we include consideration of properties of the relatum such as its feature type, size and associated image schema. In this paper, we extract spatial descriptions from the Google search engine for nine prepositions across three locations, compare their acceptance thresholds (the distances at which different prepositions are acceptable), and study variations in different contexts using cumulative graphs and scatter plots. Our results show that adjacency prepositions next to and adjacent to are used for a large range of distances, in contrast to beside; and that topological prepositions in, at and on can all be used to indicate proximity as well as containment and collocation. We also found that reference object image schema influences the selection of geospatial prepositions such as near and in

    Cross-Corpora Analysis of Spatial Language: The Case of Fictive Motion (Short Paper)

    No full text
    The way people describe where things are is one of the central questions of spatial information theory and has been the subject of considerable research. We investigate one particular type of location description, fictive motion (as in, The range runs along the coast). The use of this structure is known to highlight particular properties of the described entity, as well as to convey its configuration in physical space in an effective way. We annotated 496 fictive motion structures in seven corpora that represent different types of spatial discourse - news, travel blogs, texts describing outdoor pursuits and local history, as well as image and location descriptions. We analysed the results not only by examining the distribution of fictive motion structures across corpora, but also by exploring and comparing the semantic categories of verbs used in fictive motion. Our findings, first, add to our knowledge of location description strategies that go beyond prototypical locative phrases. They further reveal how the use of fictive motion varies across types of spatial discourse and reflects the nature of the described environment. Methodologically, we highlight the benefits of a cross-corpora analysis in the study of spatial language use across a variety of contexts

    An empirical study of the semantic similarity of geospatial prepositions and their senses

    No full text
    Spatial prepositions have been studied in some detail from multiple disciplinary perspectives. However, neither the semantic similarity of these prepositions, nor the relationships between the multiple senses of different spatial prepositions, are well understood. In an empirical study of 24 spatial prepositions, we identify the degree and nature of semantic similarity and extract senses for three semantically similar groups of prepositions using t-SNE, DBSCAN clustering, and Venn diagrams. We validate the work by manual annotation with another data set. We find nuances in meaning among proximity and adjacency prepositions, such as the use of close to instead of near for pairs of lines, and the importance of proximity over contact for the next to preposition, in contrast to other adjacency prepositions
    corecore